Copied to
clipboard

G = C42.31D6order 192 = 26·3

31st non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.31D6, C4⋊C816S3, D6⋊C4.15C4, D6⋊C8.12C2, C12⋊C816C2, C24⋊C422C2, (C2×C8).218D6, (C8×Dic3)⋊24C2, C6.14(C8○D4), C2.16(C8○D12), Dic3⋊C4.15C4, C422S3.2C2, (C4×C12).66C22, C12.337(C4○D4), C2.15(D12.C4), (C2×C12).837C23, (C2×C24).259C22, C4.57(Q83S3), C4.132(D42S3), C6.33(C42⋊C2), C34(C42.7C22), (C4×Dic3).278C22, (C3×C4⋊C8)⋊26C2, (C2×C4).37(C4×S3), C22.115(S3×C2×C4), (C2×C12).182(C2×C4), (C2×C3⋊C8).197C22, (S3×C2×C4).182C22, (C2×C6).92(C22×C4), C2.10(C4⋊C47S3), (C22×S3).17(C2×C4), (C2×C4).779(C22×S3), (C2×Dic3).55(C2×C4), SmallGroup(192,399)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.31D6
C1C3C6C12C2×C12S3×C2×C4C422S3 — C42.31D6
C3C2×C6 — C42.31D6
C1C2×C4C4⋊C8

Generators and relations for C42.31D6
 G = < a,b,c,d | a4=b4=1, c6=b-1, d2=a2b, ab=ba, cac-1=a-1, dad-1=a-1b2, bc=cb, bd=db, dcd-1=a2b2c5 >

Subgroups: 216 in 96 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C4⋊C8, C42⋊C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C42.7C22, C12⋊C8, C8×Dic3, C24⋊C4, D6⋊C8, C3×C4⋊C8, C422S3, C42.31D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, C4×S3, C22×S3, C42⋊C2, C8○D4, S3×C2×C4, D42S3, Q83S3, C42.7C22, C4⋊C47S3, C8○D12, D12.C4, C42.31D6

Smallest permutation representation of C42.31D6
On 96 points
Generators in S96
(1 50 34 79)(2 80 35 51)(3 52 36 81)(4 82 37 53)(5 54 38 83)(6 84 39 55)(7 56 40 85)(8 86 41 57)(9 58 42 87)(10 88 43 59)(11 60 44 89)(12 90 45 61)(13 62 46 91)(14 92 47 63)(15 64 48 93)(16 94 25 65)(17 66 26 95)(18 96 27 67)(19 68 28 73)(20 74 29 69)(21 70 30 75)(22 76 31 71)(23 72 32 77)(24 78 33 49)
(1 19 13 7)(2 20 14 8)(3 21 15 9)(4 22 16 10)(5 23 17 11)(6 24 18 12)(25 43 37 31)(26 44 38 32)(27 45 39 33)(28 46 40 34)(29 47 41 35)(30 48 42 36)(49 67 61 55)(50 68 62 56)(51 69 63 57)(52 70 64 58)(53 71 65 59)(54 72 66 60)(73 91 85 79)(74 92 86 80)(75 93 87 81)(76 94 88 82)(77 95 89 83)(78 96 90 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 18 28 45 13 6 40 33)(2 44 29 5 14 32 41 17)(3 4 30 31 15 16 42 43)(7 24 34 27 19 12 46 39)(8 26 35 11 20 38 47 23)(9 10 36 37 21 22 48 25)(49 91 96 56 61 79 84 68)(50 55 73 78 62 67 85 90)(51 77 74 66 63 89 86 54)(52 65 75 88 64 53 87 76)(57 83 80 72 69 95 92 60)(58 71 81 94 70 59 93 82)

G:=sub<Sym(96)| (1,50,34,79)(2,80,35,51)(3,52,36,81)(4,82,37,53)(5,54,38,83)(6,84,39,55)(7,56,40,85)(8,86,41,57)(9,58,42,87)(10,88,43,59)(11,60,44,89)(12,90,45,61)(13,62,46,91)(14,92,47,63)(15,64,48,93)(16,94,25,65)(17,66,26,95)(18,96,27,67)(19,68,28,73)(20,74,29,69)(21,70,30,75)(22,76,31,71)(23,72,32,77)(24,78,33,49), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,43,37,31)(26,44,38,32)(27,45,39,33)(28,46,40,34)(29,47,41,35)(30,48,42,36)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60)(73,91,85,79)(74,92,86,80)(75,93,87,81)(76,94,88,82)(77,95,89,83)(78,96,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,28,45,13,6,40,33)(2,44,29,5,14,32,41,17)(3,4,30,31,15,16,42,43)(7,24,34,27,19,12,46,39)(8,26,35,11,20,38,47,23)(9,10,36,37,21,22,48,25)(49,91,96,56,61,79,84,68)(50,55,73,78,62,67,85,90)(51,77,74,66,63,89,86,54)(52,65,75,88,64,53,87,76)(57,83,80,72,69,95,92,60)(58,71,81,94,70,59,93,82)>;

G:=Group( (1,50,34,79)(2,80,35,51)(3,52,36,81)(4,82,37,53)(5,54,38,83)(6,84,39,55)(7,56,40,85)(8,86,41,57)(9,58,42,87)(10,88,43,59)(11,60,44,89)(12,90,45,61)(13,62,46,91)(14,92,47,63)(15,64,48,93)(16,94,25,65)(17,66,26,95)(18,96,27,67)(19,68,28,73)(20,74,29,69)(21,70,30,75)(22,76,31,71)(23,72,32,77)(24,78,33,49), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,43,37,31)(26,44,38,32)(27,45,39,33)(28,46,40,34)(29,47,41,35)(30,48,42,36)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60)(73,91,85,79)(74,92,86,80)(75,93,87,81)(76,94,88,82)(77,95,89,83)(78,96,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,28,45,13,6,40,33)(2,44,29,5,14,32,41,17)(3,4,30,31,15,16,42,43)(7,24,34,27,19,12,46,39)(8,26,35,11,20,38,47,23)(9,10,36,37,21,22,48,25)(49,91,96,56,61,79,84,68)(50,55,73,78,62,67,85,90)(51,77,74,66,63,89,86,54)(52,65,75,88,64,53,87,76)(57,83,80,72,69,95,92,60)(58,71,81,94,70,59,93,82) );

G=PermutationGroup([[(1,50,34,79),(2,80,35,51),(3,52,36,81),(4,82,37,53),(5,54,38,83),(6,84,39,55),(7,56,40,85),(8,86,41,57),(9,58,42,87),(10,88,43,59),(11,60,44,89),(12,90,45,61),(13,62,46,91),(14,92,47,63),(15,64,48,93),(16,94,25,65),(17,66,26,95),(18,96,27,67),(19,68,28,73),(20,74,29,69),(21,70,30,75),(22,76,31,71),(23,72,32,77),(24,78,33,49)], [(1,19,13,7),(2,20,14,8),(3,21,15,9),(4,22,16,10),(5,23,17,11),(6,24,18,12),(25,43,37,31),(26,44,38,32),(27,45,39,33),(28,46,40,34),(29,47,41,35),(30,48,42,36),(49,67,61,55),(50,68,62,56),(51,69,63,57),(52,70,64,58),(53,71,65,59),(54,72,66,60),(73,91,85,79),(74,92,86,80),(75,93,87,81),(76,94,88,82),(77,95,89,83),(78,96,90,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,18,28,45,13,6,40,33),(2,44,29,5,14,32,41,17),(3,4,30,31,15,16,42,43),(7,24,34,27,19,12,46,39),(8,26,35,11,20,38,47,23),(9,10,36,37,21,22,48,25),(49,91,96,56,61,79,84,68),(50,55,73,78,62,67,85,90),(51,77,74,66,63,89,86,54),(52,65,75,88,64,53,87,76),(57,83,80,72,69,95,92,60),(58,71,81,94,70,59,93,82)]])

48 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I4J4K6A6B6C8A8B8C8D8E8F8G8H8I8J8K8L12A12B12C12D12E12F12G12H24A···24H
order12222344444444444666888888888888121212121212121224···24
size111112211114466661222222224466661212222244444···4

48 irreducible representations

dim1111111112222222444
type++++++++++-+
imageC1C2C2C2C2C2C2C4C4S3D6D6C4○D4C4×S3C8○D4C8○D12D42S3Q83S3D12.C4
kernelC42.31D6C12⋊C8C8×Dic3C24⋊C4D6⋊C8C3×C4⋊C8C422S3Dic3⋊C4D6⋊C4C4⋊C8C42C2×C8C12C2×C4C6C2C4C4C2
# reps1111211441124488112

Matrix representation of C42.31D6 in GL6(𝔽73)

25110000
3480000
001000
000100
0000270
00004646
,
4600000
0460000
0072000
0007200
000010
000001
,
5100000
0510000
0002700
00462700
00007271
000001
,
51260000
0220000
00462700
0002700
000012
00007272

G:=sub<GL(6,GF(73))| [25,3,0,0,0,0,11,48,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,46,0,0,0,0,0,46],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,0,0,0,0,0,0,51,0,0,0,0,0,0,0,46,0,0,0,0,27,27,0,0,0,0,0,0,72,0,0,0,0,0,71,1],[51,0,0,0,0,0,26,22,0,0,0,0,0,0,46,0,0,0,0,0,27,27,0,0,0,0,0,0,1,72,0,0,0,0,2,72] >;

C42.31D6 in GAP, Magma, Sage, TeX

C_4^2._{31}D_6
% in TeX

G:=Group("C4^2.31D6");
// GroupNames label

G:=SmallGroup(192,399);
// by ID

G=gap.SmallGroup(192,399);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,120,422,219,58,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^-1,d^2=a^2*b,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^2*c^5>;
// generators/relations

׿
×
𝔽